A Hybrid Connectionist, Sy b&c Learning System

نویسندگان

  • Lawrence
  • Steve G. Romaniuk
چکیده

This paper describes the learning part of a system which has been developed to provide expert systems capability augmented with learning. The learning scheme is a hybrid connectionist, symbolic one. A network representation is used. Learning may be done incrementally and requires only one pass through the data set to be learned. Attribute, value pairs are supported as a variable implementation. Variables are represented by groups of connected cells in the network. The learning algorithm is described and an example given. Current results are discussed, which include learning the well-known Iris data set. The results show that the system has promise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spoken Language Processing in the Hybrid Connectionist Architecture SCREEN

In this paper1 we describe a robust, learning approach to spoken language understanding. Since interactively spoken and computationally analyzed language often contains many errors, robust connectionist networks are used for providing a at screening analysis. A screening analysis is a shallow at analysis based on category sequences at various syntactic, semantic and dialog levels. Rather than u...

متن کامل

Using hybrid connectionist learning for speech/language analysis

In this paper we describe a screening approach for speech/ language analysis using learned, at connectionist representations. For investigating this approach we built a hybrid connectionist system using a large number of connectionist and symbolic modules. Our system SCREEN learns a at syntactic and semantic analysis of incremental streams of word hypothesis sequences. In this paper we focus on...

متن کامل

A Framework for the Cooperation of Learning Algorithms

We introduce a framework for training architectures composed of several modules. This framework, which uses a statistical formulation of learning systems, provides a unique formalism for describing many classical connectionist algorithms as well as complex systems where several algorithms interact. It allows to design hybrid systems which combine the advantages of connectionist algorithms as we...

متن کامل

Connectionist ’viterbi Training: a New Hybrid Method for Continuous Speech Recognition

these procedures are well suited to speech recognition applications, in which Hybrid methods which combine hidden Markov models (HMMs) and connectionist techniques take advantage of what are. believed to be the strong points of each of the two approaches: the powerful discrimination-based learning of connectionist networks and the time-alignment capability of HMMs. Connectionist Viterbi Trainin...

متن کامل

Connectionist Learning Classifier System

Impetuous development of artificial neural networks makes it possible to transfer many ideas from this area into adjacent areas. This work investigates an opportunity of mapping learning classifier systems (LCS) into artificial neural networks (ANN). Possible learning types for hybrid connectionist classifier system (CLCS) for multi-step problems are derived. Transformation’s opportunity of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999